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Abstract. According to the classical thermodynamic description, a coexistence surface 
results from the intersection of the hypersurfaces which are the solutions of the Gibbs- 
Duhem (GD) equations for each single coexisting phase. This geometrical view is not 
thermodynamically consistent in that it conventionally relies on the introduction of the 
metastable extension of the one-phase equilibrium surfaces. It is shown that a new, fully 
consistent thermodynamic description is possible. Our approach is characterised by a local 
study of the solutions of the GD equation, regarded as a differential equation in the contact 
space in which all the densities and fields are regarded as independent variables. An 
m-phase solution is described as one in which ( m  - 1) densities may be fixed arbitrarily and 
the others are linear functions of these. The Gibbs phase rule is found to be valid for these 
solutions, although in no way can they be regarded as resulting from the intersection of 
single-phase solutions. Changes of variables in thermodynamics are identified with contact 
transformations leaving the fundamental equation invariant. 

1. Introduction 

The classical discussion of phase equilibrium within the framework of thermodynamics 
is that given by Gibbs (1876). It is based on the Gibbs-Duhem (GD) equation which, 
for a multicomponent fluid system, may be written as 

-Vdp+SdT+N1dpl+...+NcdWc=O (1.1) 

d p = u d T + p i d C L , + . . . + p c d C L c  (1.2) 

u=s/v  and PI = Nil V ( i  = 1, 2, . . . , c ) .  

or, in terms of intensive variables, 

where 

When written in the form (1.2) the G D  equation is regarded as the differential 
expression of a fundamental equation (Gibbs 1876) 

p=p(T,CL1,. . . ,CL,) (1.3) 
which is interpreted geometrically as a (c + 1)-dimensional hypersurface in the (c + 2)- 
dimensional extendedfield space described by the fields (Griffiths and Wheeler 1970) T, 

Different phases in equilibrium are characterised by different values for the density 
variables U, pi but identical values for the fields. Since the densities are defined as 
partial derivatives of equation (1.3) a coexistence surface is naturally regarded as 

CL, and P. 
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resulting from the intersection in the extended field space of the (c + 1)-dimensional 
hypersurfaces which are the solutions of the G D  equations for each single phase of the 
system. 

Following this view, the most important result of the thermodynamics of phase 
equilibria, namely the Gibbs phase rule, appears as the translation in thermodynamic 
language of geometrical properties concerning the intersection of surfaces in multi- 
dimensional spaces. For example, the coexistence of four phases for a single- 
component system is excluded on the basis that the intersection at the same point of four 
surfaces is to be considered a highly improbable event (Gibbs 1876, Grifiths and 
Wheeler 1977, private communication). 

This geometrical view of phase coexistence, although attractive and heuristically 
powerful, should be regarded as conventional in that it relies on the introduction of the 
'metastable' extension of the one-phase equilibrium surfaces. Even if this description is 
not physically absurd, since metastable states have been realised in most cases, their 
description lies outside the strict province of equilibrium thermodynamics and for this 
reason it has for some time been seriously criticised in the literature (Pippard 1966, 
Wheeler 1974) but, to the author's knowledge, no alternative approach has been 
proposed so far. 

Moreover, in practical terms difficulties arise when the primary experimental 
information is the coexistence locus, the shapes of the single-phase hypersurfaces being 
inaccessible in the immediate neighbourhood of the locus. With this in mind, we 
propose in this paper an alternative, fully consistent thermodynamic description of 
multiphase equilibrium through the analysis of all possible solutions of the G D  
equation. Indeed, in deriving this equation from the laws of thermodynamics we do not 
need to assume that a single-phase system is considered so that the same single equation 
should be used to describe all possible states of a given system irrespective of the 
number of phases. Rather than the discontinuity of the densities at the coexistence 
surface, which is central to the classical, phase-based concept, we may look at the 
behaviour of the average densities of the system, some of which may be chosen 
arbitrarily within given limits in the coexistence region, while the others are linear 
functions of these. Let us consider, for example, a one-component system in a 
two-phase region. The two phases will be referred to as CY and p and the phase CY will be 
assumed to be the more dense. Then, with obvious notation, we have for the average 
densities of the system 

(1.4) 
where E denotes the internal energy density and x = V"/ V. Solving now for x from the 
first of these equations we get 

p = xp" + ( 1  - x ) p P  E =XE"+(l-x)E@ U = X U "  + (1 - x ) u @  

and therefore 
- - 

; (1.6) 

that is, the internal energy E and the entropy density (T are expressed as linear functions 
of p for p within the interval (p' ,  p a ) .  

This linear relation between densities will in turn imply a constraint on the fields so 
that the coexistence surfaces in the field space will have a dimensionality in agreement 
with the Gibbs phase rule, although there is no need to interpret them as resulting from 

€ = -  U=- 

P P  - P m  p p  + P P  - P a  p + 
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the intersection of single-phase solutions. It will be shown in the next section that all the 
coexistence surfaces, irrespective of the number of phases, will appear as projections on 
the field space of (c  + 1)-dimensional solutions of the G D  equation. 

In this way we obtain a unified representation of both single and multiphase 
equilibrium states in which the validity of the phase rule appears as the result of a 
projection operation rather than an intersection. 

Equation (1.1) is not a single homogeneous form which can be identified with the 
GD equation. Working in the entropy scheme (Tisza 1961) one would obtain 

l J d ( l / T ) + V d ( p / T ) - f  Nid(p i lT)=O 
1 = 1  

(1 .7)  

and the corresponding equation in term of intensive variables is obtained by dividing, 
for example, by R V, where R is the gas constant to obtain the form (Leung and Griffiths 
1973) 

c 

d w = C  p , d v , - ~ d B  (1.8) 
i = l  

where 

w = p / R T  U1 = PlIRT ( i =  1 , 2 , .  . . , c )  B = l /RT.  

It is an essential feature of most presentations of thermodynamics to point out that the 
same information can be given in many different ways by changing the set of variables. 
The choice of the method of representation is, of course, to a large extent arbitrary and 
is determined in any particular case by some criterion of convenience and simplicity. In 
such a situation we have to know how various objects change when we change 
coordinates. Variable transformations which leave the G D  equation invariant as well 
as their effect on its solutions will be discussed in § 3. There we will also point out the 
relevance of projective transformations for the interpretation of certain aspects of 
phase diagrams. 

2. Coexistence surfaces as solutions of the GD equation 

A uniform notation will be convenient in the following, and therefore we introduce 
p 0 = u  and p o =  T so that the GD equation in the non-homogeneous form (1.2) 
becomes 

(2.1) 
where the summation sign will be omitted in expressions like this unless confusion might 
result. 

It is often quite convenient, and it  is indeed a fairly general procedure for the study 
of a physical system, to start with a representation of the states of that system, by means 
of the points of a suitable space. For example, the microscopic state of a system is 
described in classical Hamiltonian mechanics by means of a point in phase space. This 
classical phase space is a differentiable manifold of even dimensionality, obviously very 
large for any macroscopic system, endowed with a symplectic structure, i.e. a regular 
and closed two-form. By contrast, the macroscopic state of a system, i.e. its ther- 
modynamic state, is described by means of a small number of measurable physical 
quantities which, for this reason, are usually called variables orparameters ofstates. For 

dp -pi  dgi = 0 
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a c-component fluid system we need (c  + 1) independent variables. Often one starts 
with a space spanned by (c + 1) fields, the field space; however, as we have discussed in 
the previous section, in a multiphase region we have to regard the densities as well as the 
fields as independent variables and it is most convenient, for the interpretation of the 
results we will obtain in this section, to define a state by means of (2c + 3) quantities, 
namely the (c  + 1) pairs (wir p i )  and p .  

We may regard a state as a point in a (2c + 3)-dimensional space, the states space. In 
this space, of odd dimensionality, equation (2.1) defines at each point a tangent 
hyperplane of even dimensionality 2(c + 1). This field of hyperplanes is nondegenerate 
and provides, therefore, the state space with a contact structure (see appendix). We may 
call a states space in which a contact structure is defined by means of a G D  equation in 
the nonhomogeneous form (2.1) a conracrspace. It is a fortunate circumstance that this 
terminology, introduced here in conformity with mathematical conventions dating back 
to Lie (Eisenhart 1961), is also meaningful from a purely thermodynamic point of view. 
Indeed, the number and type of variables which enter in the definition of a contact space 
for a thermodynamic system are obviously related to the number and type of energetic 
contacts, defiped through suitable walls, that the system can have. 

A solution of the G D  equation is any integral hypersurface of the field of hyper- 
planes in the contact space, namely a submanifold such that at each point its tangent 
plane belongs to the hyperplane defined by Eq. (2.1). In order to classify all possible 
solutions it is most appropriate to start with a parametric representation. Let 

Pi = P i ( X l , .  . . y  xn) 

pi = P i ( X l , .  . * 9 x n )  n < 2 ( c + 1 )  (2.2) 

p = p ( x 1 ,  * * e ,  x f l )  

be the parametric equations of a solution. We cannot have n = 2(c + l ) ,  for the field of 
hyperplanes, defined through the GD contact form on the RHS of equation (2.1), is 
nonintegrable in the contact space (see appendix). Consider then the equations 

pi = P i ( x 1 , .  9 x n )  ( i  = 0, 1, . . . , c )  (2.3) 

and denote by f the rank of the jacobian 

a(P0, P l ,  . . . 9 Pc) 

a b l ,  x 2 ,  . . . , x,) ' 
(2.4) 

This number, f ,  which can also be zero if all the functions (2.3) are constant, can exceed 
neither the number n nor the number (c  + 1). It is always possible to relabel the indices 
of the ( p i , p i )  and the x K  such that the f first equations (2.3) are solvable for 
x l ,  x 2 , .  . . , xf i  If we now describe all the functions (2.2) with the help of the new 
variables 

Xf, . . 9 , xfl (2.5) 
then p f . .  . pc, because of our assumption concerning the rank of (2.4), become 
functions of PO . . . c L f - 1  alone and the same also holds for p if equation (2.1) is satisfied. 
Moreover, this last relation implies 

Po, Pll . * * 9 Pf-1 

C 

pi = a p / w i  - C PI acLJ/acLi ( i = o , l ,  . . . )  f -1) .  (2.6) 
J = f  
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Thus we only need to know (pf , .  , , , pc) as functions of the variables (2.5) in order to 
calculate all the densities. Now if (m  - 1) is the rank of the jacobian 

(2.7) a(pf, . . . , pc)/a(xf,. . . , x,) 

we can again choose the indices such that among the equations 

PJ = P J ( P O , .  . . , pf-1, xy. .  - x , )  (J =f, f + 1 , .  * * , c)  (2.8) 

the first ( m  - 1) are solvable for ( x f .  . . xf+m-2) .  We can then always represent the 
functions P~+,,,-~ . . . pc and therefore also the hypersurface (2.2) with the help of the 
(f + m - 1) variables 

PU, P I , .  . . ,  Pf-1 Pft . . . 7 P f + m - 2 .  (2.9) 

Obviously we always have n = f + m - 1 S c + 1, from which it follows that the dimen- 
sion of the hypersurface (2.2) can at most be equal to (c + 1). The most important case is 
that in which the dimension of the hypersurface is maximal and therefore the Gibbs 
phase rule f = c - m + 2 is satisfied. These integral hypersurfaces with largest dimen- 
sionality are called Legendre submanifolds of the contact space. They can be classified 
according to the value taken by either f or m, respectively called the number of degrees 
of freedom and the number of coexisting phases. 

Consider first the case specified algebraically by setting f = c + 1. In this case m = 1 
and equations (2.6) take the form 

Pi = ap/apl ( i = O ,  1 , . . . ,  c ) ,  (2.10) 

and this is a single-phase solution for the densities are determined uniquely by 
equations (2.10) in the neighbourhood of each point in the extended field space. In this 
case we may regard the last of the parametric equations (2.2), namely 

(2.11) 

as the equation of the surface which is obtained by projecting, parallel to the p, axes, the 
Legendre submanifold on the extended field space. 

Not all single-phase solutions will represent equilibrium states; for this purpose, i.e. 
to represent only equilibrium states, the function p given by equation (2.1 1) has to be 
convex, and therefore we must have 

(aPiIaPi 1 2 0 

If, however, we set f < c + 1, then c + 2  - f = m > 1 and 

P =p(CLo, . . . , P c ) ,  

a h ,  P,)/a(@i, P J )  2 0 . . . a(pl0, . . . , P i c ) / a ( P i o ,  . . . , P i c )  2 0. (2.12) 

P = P ( C L " 7  . . . ,  Pf-1) 

W + l =  CLf+l(P",. . . , Pf-1) 
( I  = 0, 1, . . . , m - 2) (2.13) 

and from equations (2.6) 

(2.14) 

We then have what we may call an m-phase solution. Indeed, in this case we may 
arbitrarily fix the values of ( m  - 1) densities p f .  . . pf+m-2,  within given limits, and then 
all the other densities are determined as linear functions of these as well as f indepen- 
dent fields CL,), . . , ,  CL^-^, by equations (2.14). Here again not all m-phase solutions 
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should satisfy convexity conditions similar to those written above for a single-phase 
solution, namely 

i a p i l a p i )  2 0 dip,, pJ)/’a(pi ,  W J )  3 0 . . . a(pioi . . . 3 pif-l)/a(kIo, . . , F i p - 1 )  3 0 
(2.15) 

where the remaining (m - 1) densities pp . . . pc are held constant in these derivatives. In  
this case equations (2.13) are the parametric equations of the coexistence surface in the 
extended field space. Analogues of the Clausius-Clapeyron equation are readily 
obtained from equation (2.14). 

Let us consider, for example, a two-phase equilibrium in a single-component system 
(c = 1, m = 2). It will be described by a solution of the GD equation 

in either of the two forms 

dp = u d T  + p d p  

P = P(T)  p =p(T)  
with (au/dp)r = -dp/dT and (dp/ap)T = 0 

d P  d p  (+=dT-PE 
or 

d P  d T  
p = - - u - - -  

dCL dCL 
The convexity requirements reduce in this simple case to 

and 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

If in equation (2.17) p ranges between p’ and p‘, the densities of the two coexisting 
phases, then the corresponding values of U are given by the equations 

(2.21) 

On the other hand, these two equations can be solved for dP/dT and d p / d T  to obtain 
two possible forms of the Clausius-Clapeyron equation 

(2.22) 
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where U and s denote the specific volume and entropy. The following remark is 
appropriate at this point. According to Gibbs' view of phase equilibrium it is possible, 
although entirely improbable, to imagine a situation in which three different phases, say 
a, p and y, coexist along a line in the field space for a single-component system?. In this 
case we shall have three equations like equation (2.21) and for their simultaneous 
solution we should have 

p y  = hp" + vp* 

uy = Au"  + vas 
(2.23) 

with A + Y = 1, namely the third phase will belong to the line segment (one-simplex) 
determined in the density space by the two other phases a and p. Situations of this type 
do not correspond to a different solution of the G D  equation and cannot be described 
from our local, purely thermodynamic point of view. 

In general, in many ways we may obviously regard the f-dimensional coexistence 
surface represented by equations (2.13) in the extended field space as resulting from the 
intersection of m (or more for non-general positions) (c + 1)-dimensional hypersurfaces 
of equation 

p = p a ( C L o r . .  . ,  p c ) .  (2.24) 

This possibility simply arises from dimensional considerations. We must recall, 
however, that an f-dimensional coexistence surface in the extended field space is 
obtained by projecting, parallel to the density axes, the hypersurface which is an 
m-phase solution of the G D  equation in the (2c + 3)-dimensional contact space. Now 
this hypersurface will always be (c + 1)-dimensional no matter what the value of m and 
therefore in no way may be regarded as resulting from the intersection of m single- 
phase solutions. In particular, when f = 0 we have m = c + 2; then all p, and p are 
constant and the pi are arbitrary variables. In this case the (c+l)-dimensional 
coexistence surface in the contact space is parallel to the densities hyperplane and its 
projection on the extended field space reduces to a single point. 

As we remarked above, as well as the Legendre submanifolds which verify the Gibbs 
phase rule, there are solutions of the G D  equation in which, for a given number of 
degrees of freedom, the number of phases is less than predicted by the phase rule, 
namely m < c  +2-f  In any case, since f 3 0 ,  the maximum possible number of 
coexisting phases is always c + 2. 

3. Change of variables in thermodynamics 

In the previous section we have obtained all possible solutions of the G D  equation (2.1) 
working in a particular coordinate system. In this local coordinate system the pressure p 
plays the exceptional role of the potential, the fields T, F ~ ,  . . . , p, appear as differen- 
tials while the conjugate densities U, p l ,  . . . , pc appear as coefficients in the GD contact 
form. The choice of state variables is, however, largely arbitrary and variable trans- 
formations are frequently used in thermodynamic reasoning. For example, affine 
transformations in the field space have been extensively used recently in connection 
with critical points (GrifFiths and Wheeler 1970) and phase transitions (Wheeler 1974) 

* It is interesting to observe at this point that one could imagine the realisation of this possibility by a 
continuous variation of the molecular mass. 
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in multicomponent systems. Moreover, i t  may sometimes be convenient to change the 
role of the dependent (the potential) and independent fields, e.g. to interchange p and p 
in equation (2.16). This is a variable transformation which is considered appropriately 
in the extended field space introduced in 0 1, but we will see below that a very interesting 
transformation of the density variables is associated with it. Finally, the introduction of 
a new potential to interchange the roles of fields and densities is commonly effected by 
the use of a Legendre transform. 

The problem of determining all variable transformations which leave the 
fundamental equation of thermodynamics invariant is considered in this section. We 
will show that the various changes of variables mentioned above, which are in ordinary 
use in thermodynamics, are most conveniently interpreted in the (2c + 3)-dimensional 
contact space introduced in 0 2. A general variable transformation in this space will 
have the equations 

p ' = p ' ( p ,  PJI P J )  F :  = @ : ( p ,  P J , P J )  P :  = P : ( P ?  PJ,  ~ r ) .  (3.1) 

In order that a transformation of this kind will preserve the contact structure of the 
space it is necessary that the equation 

dp'-p: d b :  = O  (3.2) 

dp - p~ d@j = 0. (3.3) 

Equivalently, a transformation of the form (3.1) is called a contuct transformation if the 
condition 

(3.4) 

It can readily be shown that all transformations mentioned above may be considered 

( U )  Let us start our analysis from a general point transformation acting in the field 

is satisfied whenever 

dP'-P: dP:  = A ( P ,  PI. Pr)(dP-PJ dFJ) 

is verified with A # 0. 

as contact transformations of a particular type. 

space and therefore defined by equations of the form 

P :  = P:(Po, .  . 9 ,  Pc) 

a(& . . . , d ) / a ( P o ,  . . . , CL,) # 0. 

( i = O ,  1 , .  . * ,  c )  (3.5) 
with 

(3.6) 

Then a contact transformation is obtained assuming that p behaves like a scalar, namely 
that p' = p .  In this case we get from equation (3.4) A = 1 and 

(3.7) P k  = P I  (aw Yapk) (k =0 ,  1,. . . , c )  

from which the inverses are readily obtained by noting that 

(3.8) 

and therefore by multiplying both members of equation (3.7) by aFk/aF[I and summing 
over k we get 

P[I = P k  (aPk/ak[I). (3.9) 
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The set of densities therefore behaves like a covariant vector and the new densities are 
expressed as linear functions of the old ones. We may summarise these results by 
writing down the equations of the corresponding contact transformations, namely, 

P ' = P  (3.10) 

It is of interest to calculate the functional determinant of this transformation: 

p: =P:(Po,. . . , C L C )  P :  = PJ(apJ/apL: 1 = p: (pJ ,  p J ) .  

(3.11) 

One must observe that condition (3.6) implies that a transformation of this kind in 
which all the (c + 1) independent fields are involved is possible only in the neighbour- 
hood of a single-phase solution. Indeed, condition (3.6) implies that all the fields may 
be varied independently, which is not the case, as a consequence of equations (2.13), on 
a coexistence locus. Appropriately restricted point transformations may obviously be 
used in the neighbourhood of a multiphase solution. 

( b )  We turn now to the consideration of an extended point transformation acting on 
the extended field space and therefore defined by equations of the form 

p ' = p ' ( p ~  P I )  'p:(p,  F J ) .  (3.12) 

Transformations of this kind occur when we change the field playing the exceptional 
role of the potential or on passing from the energy to the entropy scheme as described 
by equations (1.7) and (1.8). In all these cases equation (3.4) implies 

hence 

(3.13) 

(3.14) 

The new densities together with A may therefore be obtained by solving a system of 
linear equations. In particular, by eliminating A we get 

(3.15) 

which defines locally a projective transformation. It is convenient to consider at this 
point the single-component system as an illustrative example. 

We go back to the non-uniform notation and write the GD equation in the 
homogeneous form 

(3.16) 

From this equation we may derive a fundamental equation in a number of ways, but two 
forms are commonly used, namely the one in which p plays the exceptional role of the 
potential 

(3.17) 

and the one in which such a role is played by p. Equations (3.12) become in this case 

P I=@ T ' =  -T F ' = P  (3.18) 

- V dp + S  d T  + N d/..i = O .  

dp = r d T  + p  d p  
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and therefore equations (3.14) give 

A =- -p i  AU = -pb Ap = -1, (3.19) 

from which we get 

A = - l / p  pb = u l p = s  p i  = l / p  = U. (3.20) 

The new fundamental equation will therefore take the form 

d p  = s  dT’+u  dp (3.21) 

while the functional determinant is readily evaluated to be 

(3.22) 

We interpret this transformation as follows. We may regard the extensive quantities S,  
V, N as a set of homogeneous coordinates in a two-dimensional density space. This 
interpretation is justified by the occurrence of the following two circumstances. First 
the triplet S = 0, V = 0, N = 0 does not represent any thermodynamic state and, second, 
if CY is any positive real number the triplet (as, CY V, CYN) will represent the same state as 
the original one ( S ,  V, N ) .  Now we may introduce in this projective density space a 
local coordinate system in a number of ways, but the most natural is to make use of the 
so called affine charts in which density variables are introduced as coordinates. By 
density, we mean here, in a somewhat broad sense, the ratio of any two extensive 
variables. In our example of a single-component system with a two-dimensional 
density space we may have three affine charts: 

/ u = S / V ,  p = N / V  if V f O  

if N f O  (3.23) 
/ 

\.x = VIS, y = N / S  if S f O .  

S :  V :  N - S  =SIN, U = V / N  

From this point of view the variable transformation considered above appears as a 
transition from the first to the second of these charts, according to the equations 

u = p - ’  1 p = u - ; , ]  

s = c7p-I U = su 
(3.24) 

which represent a projective transformation in the density space. Its effect on a plane 
diagram is illustrated schematically in figure 1. 

“ f  

Figure 1. Schematic drawing illustrating the effect of the projective transformation given by 
equation (3.23). 
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Plane diagrams are frequently used to represent the thermodynamic properties of a 
system, but not too much attention has been given so far to the problem of distinguish- 
ing in such diagrams what are the intrinsic properties of the thermodynamic system and 
what are the artifacts of the description we give of the state space or of the operations, 
like sections, projections or both, which we make in order to get the diagram. The same 
thermodynamic object may be represented by quite different geometrical objects, from 
the point of view of a Euclidean mean, if different coordinate systems are used. Let us 
consider, for example, the effect of the transformation (3.24) on the coexistence curve 
of a simple fluid near its critical point. A number of observations indicate that T and p 
are a preferable choice of independent variables to T and p because of certain 
symmetries. We may argue that the effect of the transformation (3.23) on the 
coexistence curve is like that shown schematically in figure 2. 

Figure 2. Qualitative picture illustrating the effect of the transformation given by equations 
(3.23) on the coexistence curve near the critical point of a simple fluid. 

The orientation of tie lines in ternary systems at constant pressure and temperature 
is of particular interest to chemical engineers because it  determines the selectivity of a 
solvent. Here affine charts are introduced through different kinds of concentration 
variables, often normalised so that the use of triangular diagrams is made convenient. 
Change of variables in order to make tie lines all parallel to the base line have often been 
considered. It has been found empirically (Francis 1963) for certain systems, like 
benzene-water-ethyl alcohol, that all the tie lines converge approximately toward a 
point on the extended base line, as illustrated in figure 3. It is then obviously possible, 
by means of a projective transformation of the type considered above for simple 
systems, to make all the tie lines horizontal. It is certainly more generally true that one 

e t h y l  a l c o h o l  

Figure 3. Coexistence curve illustrating the behaviour of tie lines of the ternary liquid 
system benzene-water-ethyl alcohol. 
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can find representations in which all the tie lines in an extended region near the plait 
converge towards a point not necessarily on the base line, as illustrated in figure 4 
(Francis 1963). Admittedly a more careful discussion of this point should take into 
account the presence of critical singularities (Widom 1967), but we feel that the use of 
projective transformations may also be found enlightening for the interpretation of 
complex diagrams, although we have not investigated this point thus far. 

isopropyl a l c o h o l  

water e thylene  chlor ide  

Figure 4. Coexistence curve illustrating the behaviour of tie lines of the ternary liquid 
system water-isopropyl alcohol-ethylene chloride. 

(c) Let us finally consider Legendre transformations. By means of these trans- 
formations we may change the role of fields and densities. The variable which has to be 
singled out to play the exceptional role of the potential is readily obtained as follows. 
Assume we want to change pq+l . . . F, by means of their respective conjugate densities 
pq+l . . . pc. We then observe that 

d(p- I = q + l  f PM) = i=O 2 pi dki- I = q + l  f CL! dpi 

SO that the new potential is clearly 

(3.25) 

E 

Pl=P-  c PIP1 (3.26) 
I = q + l  

and the contact transformation will have the equations 

P l = P -  c PIP1 PI =Pi  PCL; =-pi PI! =pi P; = P I  (3.27) 

( i  = 0,  1, . . . , q ;  1 = q + 1, . . . , c )  with A as well as the functional determinant equal to 
one. The new fundamental equation follows from (3.25) and (3.26) and is 

C 

1=1+1 

dp '= 2 pi dpi - 2 PI dpl. 
i=O I = q + l  

(3.28) 

We can obtain the solutions of this new equation from those already obtained from the 
original GD equation and in this connection the relation between the contact trans- 
formation (3.27) and the usual Legendre transform will be established. Let us consider 
first a single-phase solution and let p = p ( @ ~ ,  . . . , k,) be the equation of its projection 
on the extended field space. For an equilibrium solution p is a convex function in all its 
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arguments and its Legendre transform with respect to the variables pq+l,. . . , pc is 
defined by 

p w ) .  (3.29) 4 b 0 . .  . p q , p q + l . .  . p C ) =  min ( ~ ( P O , .  . . , p c ) -  
( I l q + q . . - C I C )  l = q + l  

Now 

p ’ =  4 ( c L o . .  . pq, pq+1 * * * Pc) (3.30) 

clearly represents the equation of the projection on the extended field-density space, 
spanned by the variables p ‘ ,  po . . . F ~ ,  pq+l . . . pc, of the single-phase solution of 
equation (3.28). Indeed, from the definition (3.29) we have 

p1 = ap /ap l  ( 1  = q + l , .  . . , c ) ,  (3.31) 

The introduction of densities as differentials in the fundamental equation is particularly 
meaningful to describe m-phase solutions. In this case the equation in the extended 
field-density space of the projection of a coexistence surface will be of the form 

Indeed, 

(3.33) 

in agreement with (2.14). 
We have therefore a (c  + 1)-dimensional hypersurface irrespective of the number of 

phases, like the original surface in the contact space, which is linear in the density 
variables. It is a major merit of the contact group to respect the particular ther- 
modynamic duality between fields and densities and, therefore, the notion of coexisting 
phases. The introduction of a density in place of a field or vice versa is possible only by 
means of a Legendre involution. A famous example provided by Gibbs (1876) may 
illustrate this point. Let the fundamental equation be written in the form 

Then there is no contact transformation whose only effect is to interchange the role of U 

and T while E still maintains the exceptional role of the potential. In other words, 
among all conceivable c,hanges of thermodynamic variables, contact transformations 
are characterised as those which retain all the information contained in the fundamental 
equation. However, as in the case of canonical transformations in Hamiltonian 
mechanics, all the solutions, stable or not, are considered on the same footing. 
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Appendix. Contact manifolds (Arnold 1976) 

Let M denote an N-dimensional differentiable manifold. In a small neighbourhood of 
any point of A4 a field of tangent hyperplanes (of dimensionality (N - 1)) may be given 
by a linear differential form (also called one-form or Pfaffian form) 

N 

0 = U k ( X )  dXk X € M  
k = l  

through the Pfaffian equation 

w =o. (A.2) 

Therefore the field of hyperplanes defines a Pfaffian form apart from a non-zero factor. 
Now we note that the number of terms appearing in a given Pfaffian form may 

depend on the coordinate system. For example, if f(x) is a given scalar function the 
differential off is a Pfaffian form 

with N terms. But if f(x) itself is assumed as one coordinate, say xl, the differential will 
simply be written as 

df z d x l  (A.4) 
and contains one single term. 

Obviously it is not always possible, given a Pfaffian form U ,  to find a coordinate 
system in which the form is written either as dxl or x2 dx,. In these cases we say that the 
field of hyperplanes is integrable and x;' is called an integrating factor. For a local 
study of the integrability of a given form w it is natural to consider the two-form do,  
defined as the exterior derivative of W .  If dw = 0 then there exists a function f such that 
w = df, while if the Frobenius condition 

w xdw = O  (A.5) 

is verified then an integrating factor will exist. In three-space the Frobenius condition 
simply reduces to 

More generally the class c of a Pfaffian form, namely the smallest number of functions 
which represents the Pfaffian form, is related to the rank c' of the matrix d o  by the 
eqhation 

c = c ' + S  (-4.7) 
where 6 denotes either the number zero or unity. We have S = 0 if the class is even and 
6 = 1 if it is odd. That the rank c' is always an even number follows from the 
antisymmetry of dw. 

A field of hyperplanes is said to be non-degenerate if the rank c' of the two-form dw 
is identical with the dimensionality of the hyperplane w = 0. It follows from this 
definition that it is not possible to have a non-degenerate field of hyperplanes on a 
differentiable manifold of even dimensionality. Indeed, on such a manifold each 
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hyperplane is of odd dimensionality while the rank of dw must always be an even 
number. We are now in a position to define a contact manifold or contact space. A 
contact manifold is a differentiable manifold of odd dimensionality ( 2 n  + 1) endowed 
with a contact structure, i.e. a non-degenerate field of tangent hyperplanes of  even 
dimensionality 2n. 

It can be shown (Darboux theorem) that one can always find a local coordinate 
system in which a contact structure is defined by a Pfaffian form written in canonical 
form 

=dZ +Xk dyk (A.8) 

where ( X I  . . . xn),  ( y ~  . . . y n )  and z are the local coordinates. A contact transformation 
is a diffeomorphism of a contact manifold which preserves the contact structure, and it is 
therefore defined by equations of the type 

z”z’(z, Y J ,  X J )  Y :  = Y : ( Z , Y J , X J )  X i  =X:(Z, y j ,  XJ) (A.9) 

where the relation 

dz ’+x :  dy: = A ( Z ,  Y J ,  Xj)(dZ +XJ dy j )  (A.lO) 

must be satisfied with 

A (2, Y J ,  X J )  f 0. (A. 1 1 )  

We wish to show here that the functional determinant is given by 

(A.12) 

To this purpose we introduce a new variable V # 0 and a new notation by setting 

y; C Z ’  y ;  z y ;  Yo= z Y J  y J  
(A.13) 

Xb = V/A X: =(V/A)xi xo= v X J  VXJ. 

The relation (A.10), then, taking into account equation (A. l  l ) ,  assumes the form 

XO d Y b  + X :  dYI =xodYo+Xj  d Y j .  (A.14) 

Now we note that we can express the 2(n + 1 )  independent variables ( z ,  y J ;  V, x J )  in 
terms of the 2(n  + 1) variables (Yo, Y J ;  Xo,  X J )  by solving equations (A.13): 

z = Yo Y J  = Y J  v = x o  x J = xJ/ v. (A. 15)  
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(A.18) 

Note added in proof. The orientation of the tie-lines in the ( p ,  cr) plane in figure 2 is not 
drawn correctly. The entropy density of the liquid should be larger than that of the gas. 
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